4755 (FP1) Further Concepts for Advanced Mathematics

Section A			
1(i) 1(ii)	$\mathbf{M}^{-1}=\frac{1}{11}\left(\begin{array}{cc} 2 & 1 \\ -3 & 4 \end{array}\right)$ $\begin{aligned} & \frac{1}{11}\left(\begin{array}{cc} 2 & 1 \\ -3 & 4 \end{array}\right)\binom{49}{100}=\binom{x}{y}=\frac{1}{11}\binom{198}{253} \\ & \Rightarrow x=18, y=23 \end{aligned}$	M1 A1 [2] M1 A1(ft) A1(ft) [3]	Dividing by determinant Pre-multiplying by their inverse
2	$\begin{aligned} & z^{3}+z^{2}-7 z-15=(z-3)\left(z^{2}+4 z+5\right) \\ & z^{2}+4 z+5=0 \Rightarrow z=\frac{-4 \pm \sqrt{16-20}}{2} \\ & \Rightarrow z=-2+\mathrm{j} \text { and } z=-2-\mathrm{j} \end{aligned}$	B1 M1 A1 M1 A1 [5]	Show $z=3$ is a root; may be implied Attempt to find quadratic factor Correct quadratic factor Use of quadratic formula or other valid method Both solutions
3(i) 3(ii)	$\begin{aligned} & \frac{2}{x+4}=x+3 \Rightarrow x^{2}+7 x+10=0 \\ & \Rightarrow x=-2 \text { or } x=-5 \\ & x \geq-2 \text { or }-4>x \geq-5 \end{aligned}$	B1 B1 [2] M1 A1 A1 A2 [5]	Asymptote at $x=-4$ Both branches correct Attempt to find where graphs cross or valid attempt at solution using inequalities Correct intersections (both), or -2 and -5 identified as critical values $\begin{aligned} & x \geq-2 \\ & -4>x \geq-5 \end{aligned}$ s.c. A1 for $-4 \geq x \geq-5$ or $-4>x>-5$

4	$\begin{aligned} & 2 w-6 w+3 w=\frac{-1}{2} \\ & \Rightarrow w=\frac{1}{2} \\ & \Rightarrow \text { roots are } 1,-3, \frac{3}{2} \\ & \frac{-q}{2}=\alpha \beta \gamma=\frac{-9}{2} \Rightarrow q=9 \\ & \frac{p}{2}=\alpha \beta+\alpha \gamma+\beta \gamma=-6 \Rightarrow p=-12 \end{aligned}$	M1 A1 A1 M1 A2(ft) [6]	Use of sum of roots - can be implied Correct roots seen Attempt to use relationships between roots s.c. M1 for other valid method One mark each for $p=-12$ and q $=9$

5(i)	$\begin{aligned} & \frac{1}{5 r-2}-\frac{1}{5 r+3} \equiv \frac{5 r+3-5 r+2}{(5 r+3)(5 r-2)} \\ & \equiv \frac{5}{(5 r+3)(5 r-2)} \\ & \sum_{r=1}^{30} \frac{1}{(5 r-2)(5 r+3)}=\frac{1}{5} \sum_{r=1}^{30}\left[\frac{1}{(5 r-2)}-\frac{1}{(5 r+3)}\right] \\ & =\frac{1}{5}\left[\left(\frac{1}{3}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{18}\right)+\ldots\right. \\ & \left.+\left(\frac{1}{5 n-7}-\frac{1}{5 n-2}\right)+\left(\frac{1}{5 n-2}-\frac{1}{5 n+3}\right)\right] \\ & =\frac{1}{5}\left[\frac{1}{3}-\frac{1}{5 n+3}\right]=\frac{n}{3(5 n+3)} \end{aligned}$	M1 A1 [2] B1 B1 M1 A1 [4]	Attempt to form common denominator Correct cancelling First two terms in full Last term in full Attempt to cancel terms
6	When $n=1, \frac{1}{2} n(7 n-1)=3$, so true for $n=$ 1 Assume true for $n=k$ $\begin{aligned} & 3+10+17+\ldots . .+(7 k-4)=\frac{1}{2} k(7 k-1) \\ & \Rightarrow 3+10+17+\ldots . .+(7(k+1)-4) \\ & =\frac{1}{2} k(7 k-1)+(7(k+1)-4) \\ & =\frac{1}{2}[k(7 k-1)+(14(k+1)-8)] \\ & =\frac{1}{2}\left[7 k^{2}+13 k+6\right] \\ & =\frac{1}{2}(k+1)(7 k+6) \\ & =\frac{1}{2}(k+1)(7(k+1)-1) \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is true for $k+1$. Since it is true for $n=1$, it is true for $n=1$, 2,3 and so true for all positive integers.	B1 E1 M1 M1 A1 E1 E1 [7]	Assume true for $n=k$ Add $(k+1)$ th term to both sides Valid attempt to factorise c.a.o. with correct simplification Dependent on previous E1 and immediately previous A1 Dependent on B1 and both previous E marks

Section B			
7(i)	$(0,10),(-2,0),\left(\frac{5}{3}, 0\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	
7(ii)	$x=\frac{-1}{2}, x=1, y=\frac{3}{2}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	
7(iii)	Large positive $x, y \rightarrow \frac{3^{+}}{2}$ (e.g. consider $x=100$) Large negative $x, y \rightarrow \frac{3^{-}}{2}$ (e.g. consider $x=-100$)	M1 B1 B1 [3]	Clear evidence of method required for full marks
7(iv)	Curve 3 branches of correct shape Asymptotes correct and labelled Intercepts correct and labelled	B1 B1 B1 [3]	

8 (i)	$\|z-(4+2 \mathrm{j})\|=2$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{R} 1 \end{aligned}$	$\begin{aligned} & \text { Radius }=2 \\ & z-(4+2 \mathrm{j}) \text { or } z-4-2 \mathrm{j} \end{aligned}$
		B1	All correct
		[3]	
8(ii)	$\arg (z-(4+2 \mathrm{j}))=0$	B1	Equation involving the argument of a complex variable
		B1	$\text { Argument }=0$
		B1	All correct
8(iii)		[3]	
	$\begin{aligned} & a=4-2 \cos \frac{\pi}{4}=4-\sqrt{2} \\ & b=2+2 \sin \frac{\pi}{4}=2+\sqrt{2} \end{aligned}$	M1	Valid attempt to use trigonometry involving $\frac{\pi}{4}$, or coordinate
	$\mathrm{P}=4-\sqrt{2}+(2+\sqrt{2}) \mathrm{j}$	A2	geometry 1 mark for each of a and b
8(iv)		[3]	s.c. A1 only for $a=2.59, b=3.41$
	$\frac{3}{4} \pi>\arg (z-(4+2 j))>0$	B1	$\arg (z-(4+2 \mathrm{j}))>0$
		B1	$\arg (z-(4+2 \mathrm{j}))<\frac{3}{\pi} \pi$
		B1	$\|z-(4+2 \mathrm{j})\|<2$
		[3]	Deduct one mark if only error is use of inclusive inequalities

